Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chlorido[2,4-dibromo-6-(2-pyridylmethylaminomethyl)phenolato]copper(II)

Ji-Cheng Ma, Jin Yang and Jian-Fang Ma*

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: majf247nenu@yahoo.com.cn

Received 21 August 2007; accepted 23 August 2007

Key indicators: single-crystal X-ray study; T = 305 K; mean σ (C–C) = 0.009 Å; R factor = 0.051; wR factor = 0.137; data-to-parameter ratio = 18.8.

In the title compound, $[Cu(C_{13}H_{11}Br_2N_2O)Cl]$, the Cu^{II} atom is four-coordinated by an *N*,*N*,*O*-tridentate 2,4-dibromo-6-(2pyridylmethylaminomethyl)phenolate ligand and a chloride ion in a distorted square-planar arrangement. An N-H···O hydrogen bond helps to stabilize the struture.

Related literature

For background, see: Solomon et al. (1996); Ma et al. (2007).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_{13}H_{11}Br_2N_2O)Cl \end{bmatrix} \\ M_r = 470.05 \\ Monoclinic, P2_1/c \\ a = 13.447 (4) \\ A \\ b = 16.628 (5) \\ A \\ c = 6.881 (2) \\ A \\ \beta = 99.179 (4)^{\circ}$

 $V = 1518.8 \text{ (8) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 6.87 \text{ mm}^{-1}$ T = 305 (2) K $0.32 \times 0.26 \times 0.20 \text{ mm}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.133, T_{max} = 0.251$ 8786 measured reflections 3459 independent reflections 2044 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.137$	independent and constrained
S = 0.94	refinement
3459 reflections	$\Delta \rho_{\rm max} = 1.04 \ {\rm e} \ {\rm \AA}^{-3}$
184 parameters	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$
l restraint	

Table 1 Selected bond lengths (Å).

Cu1-O1	1.923 (4)	Cu1-N1	2.011 (5)
Cu1-N2	2.001 (4)	Cu1-Cl1	2.2517 (16)

Table 2

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2N\cdotsO1^{i}$	0.94 (4)	2.14 (5)	2.918 (6)	139 (5)
Symmetry code: (i) x	$y - y + \frac{1}{2}, z - \frac{1}{2}.$			

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

We thank the National Natural Science Foundation of China (No. 20471014), the program for New Century Excellent Talents in Chinese Universities (NCET-05–0320), the Fok Ying Tung Education Foundation, and the Analysis and Testing Foundation of Northeast Normal University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2515).

References

- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ma, J.-C., Yang, J. & Ma, J.-F. (2007). Acta Cryst. E63, m2284.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Solomon, E. I., Sundaram, U. M. & Machokin, T. E. (1996). Chem. Rev. 96, 2563–2606.

supplementary materials

Acta Cryst. (2007). E63, m2431 [doi:10.1107/S1600536807041669]

Chlorido[2,4-dibromo-6-(2-pyridylmethylaminomethyl)phenolato]copper(II)

J.-C. Ma, J. Yang and J.-F. Ma

Comment

Copper(II) complexes with various organic ligands have been a subject of intense study because of their important biological properties (Solomon *et al.*, 1996). Here, we report the synthesis and structure of the new title complex, Cu(dmp)Cl, (I), where dmp is 2,4-dibromo-6((pyridine-2-ylmethylamino)methy)phenol.

Selected bond lengths are listed in Table 1. The Cu^{II} atom is four-coordinated by one pyridine N atom, one amine N atom and one phenolate O atom from the ligand and one chloride ion in a distorted square-planar arangement (Fig. 1). The metal to ligand-atom distances in (I) are similar to the ones found in bis[2,4-dibromo-6((pyridnine-2-ylmethylamino)methy) phenolato]bis[nitratocopper(II)] (Ma *et al.*, 2007).

An N—H…O hydrogen bond (Table 2) helps to stabilize the packing in (I).

Experimental

2,4-Dibromo-6-((pyridine-2-ylmethylamino)methyl)phenol (0.372 g, 1 mmol) was added to a methanol solution (20 ml) of $CuCl_2 \cdot 2H_2O$ (0.170 g, 1 mmol) with stirring. The resulting solution was left to stand at room temperture and blue blocks of (I) were obtained after several days.

Refinement

All H-atoms bound to carbon were refined using a riding model [C—H = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$]. The amino H atom was located in a difference map and it sposition was freely refined with $U_{iso}(H) = 1.2 U_{eq}(N)$.

Figures

Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).

Chlorido[2,4-dibromo-6-(2-pyridylmethylaminomethyl)phenolato]copper(II)

Crystal data	
$[Cu(C_{13}H_{11}Br_2N_2O)Cl]$	$F_{000} = 908$
$M_r = 470.05$	$D_{\rm x} = 2.056 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo Kα radiation

Hall symbol: -P 2ybc
<i>a</i> = 13.447 (4) Å
<i>b</i> = 16.628 (5) Å
c = 6.881 (2) Å
$\beta = 99.179 \ (4)^{\circ}$
$V = 1518.8 (8) \text{ Å}^3$
Z = 4

Data collection

$\lambda = 0.71073 \text{ Å}$
Cell parameters from 8947 reflections
$\theta = 2.0 - 28.2^{\circ}$
$\mu = 6.87 \text{ mm}^{-1}$
T = 305 (2) K
Block, blue
$0.32 \times 0.26 \times 0.20$ mm

Bruker APEX CCD diffractometer	3459 independent reflections
Radiation source: fine-focus sealed tube	2044 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
T = 305(2) K	$\theta_{\text{max}} = 28.2^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -17 \rightarrow 11$
$T_{\min} = 0.133, T_{\max} = 0.251$	$k = -21 \rightarrow 20$
8786 measured reflections	$l = -9 \rightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difmap and geom
$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.137$	$w = 1/[\sigma^2(F_o^2) + (0.0706P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.94	$(\Delta/\sigma)_{max} < 0.001$
3459 reflections	$\Delta \rho_{max} = 1.04 \text{ e } \text{\AA}^{-3}$
184 parameters	$\Delta \rho_{min} = -0.83 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Drimory stom site losstion: structure inverient direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.0249 (5)	0.1997 (4)	0.2698 (10)	0.0567 (18)
H1	-0.0348	0.2549	0.2769	0.068*
C2	-0.1045 (5)	0.1518 (5)	0.1881 (12)	0.071 (2)
H2	-0.1667	0.1746	0.1402	0.085*
C3	-0.0908 (5)	0.0702 (4)	0.1784 (10)	0.064 (2)
Н3	-0.1436	0.0370	0.1239	0.077*
C4	0.0020 (5)	0.0386 (4)	0.2504 (10)	0.0555 (17)
H4	0.0131	-0.0165	0.2453	0.067*
C5	0.0794 (4)	0.0900 (3)	0.3312 (9)	0.0433 (14)
C6	0.1807 (4)	0.0582 (3)	0.4151 (10)	0.0517 (16)
H6A	0.1775	0.0324	0.5405	0.062*
H6B	0.2010	0.0180	0.3269	0.062*
C7	0.3373 (4)	0.1065 (3)	0.6124 (9)	0.0423 (14)
H7A	0.3642	0.0530	0.5977	0.051*
H7B	0.3093	0.1074	0.7338	0.051*
C8	0.4210 (4)	0.1665 (3)	0.6255 (8)	0.0376 (13)
C9	0.5188 (4)	0.1412 (3)	0.6364 (8)	0.0388 (13)
Н9	0.5326	0.0864	0.6338	0.047*
C10	0.5971 (4)	0.1957 (4)	0.6513 (9)	0.0442 (14)
C11	0.5778 (4)	0.2781 (4)	0.6515 (9)	0.0460 (15)
H11	0.6303	0.3150	0.6598	0.055*
C12	0.4791 (4)	0.3039 (3)	0.6390 (8)	0.0381 (13)
C13	0.3969 (4)	0.2501 (3)	0.6281 (8)	0.0358 (13)
N1	0.0656 (3)	0.1695 (3)	0.3389 (7)	0.0453 (12)
N2	0.2557 (3)	0.1231 (3)	0.4435 (7)	0.0372 (11)
01	0.3038 (3)	0.2762 (2)	0.6237 (6)	0.0431 (10)
Cu1	0.19000 (5)	0.23063 (4)	0.45485 (11)	0.0392 (2)
Br1	0.45266 (5)	0.41577 (3)	0.63413 (9)	0.0508 (2)
Br2	0.73138 (5)	0.15965 (5)	0.66154 (15)	0.0798 (3)
Cl1	0.12562 (12)	0.35288 (9)	0.3686 (3)	0.0528 (4)
H2N	0.291 (4)	0.133 (4)	0.337 (8)	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.045 (4)	0.049 (4)	0.073 (5)	0.002 (3)	-0.002 (3)	-0.009 (3)
C2	0.043 (4)	0.069 (6)	0.093 (6)	0.002 (3)	-0.009 (4)	0.003 (4)
C3	0.061 (4)	0.055 (5)	0.072 (5)	-0.019 (3)	-0.003 (4)	0.002 (4)
C4	0.053 (4)	0.045 (4)	0.066 (5)	-0.012 (3)	0.002 (3)	-0.005 (3)
C5	0.056 (4)	0.032 (3)	0.041 (4)	-0.005 (3)	0.005 (3)	-0.004 (3)
C6	0.054 (4)	0.024 (3)	0.075 (5)	-0.008 (3)	0.004 (3)	-0.005 (3)
C7	0.050 (3)	0.027 (3)	0.050 (4)	0.003 (2)	0.007 (3)	0.002 (3)
C8	0.055 (3)	0.022 (3)	0.034 (3)	0.002 (2)	0.000 (3)	-0.001 (2)
C9	0.041 (3)	0.033 (3)	0.038 (3)	0.004 (2)	-0.007 (2)	-0.001 (2)

supplementary materials

C10	0.046 (3)	0.039 (4)	0.046 (4)	0.008 (3)	0.000 (3)	-0.001 (3)
C11	0.050 (4)	0.042 (4)	0.045 (4)	-0.010 (3)	0.003 (3)	-0.005 (3)
C12	0.049 (3)	0.024 (3)	0.039 (3)	0.001 (2)	0.002 (3)	0.001 (2)
C13	0.045 (3)	0.029 (3)	0.032 (3)	0.002 (2)	0.004 (2)	-0.004 (2)
N1	0.046 (3)	0.039 (3)	0.050 (3)	-0.003 (2)	0.006 (2)	-0.006 (2)
N2	0.038 (3)	0.023 (2)	0.049 (3)	-0.0042 (19)	0.002 (2)	0.002 (2)
O1	0.045 (2)	0.028 (2)	0.053 (3)	0.0031 (16)	-0.0033 (18)	-0.0094 (18)
Cu1	0.0457 (4)	0.0235 (4)	0.0461 (5)	0.0024 (3)	0.0001 (3)	-0.0024 (3)
Br1	0.0744 (5)	0.0233 (3)	0.0519 (4)	-0.0046 (3)	0.0015 (3)	-0.0005 (3)
Br2	0.0459 (4)	0.0605 (5)	0.1286 (8)	0.0074 (3)	0.0000 (4)	-0.0052 (5)
Cl1	0.0572 (9)	0.0307 (8)	0.0698 (11)	0.0100 (6)	0.0079 (8)	0.0083 (7)

Geometric parameters (Å, °)

C1—N1	1.331 (7)	С7—Н7В	0.9700
C1—C2	1.379 (9)	C8—C9	1.372 (7)
C1—H1	0.9300	C8—C13	1.428 (7)
C2—C3	1.372 (9)	C9—C10	1.380 (8)
С2—Н2	0.9300	С9—Н9	0.9300
C3—C4	1.373 (9)	C10—C11	1.395 (8)
С3—Н3	0.9300	C10—Br2	1.893 (6)
C4—C5	1.392 (8)	C11—C12	1.385 (8)
C4—H4	0.9300	C11—H11	0.9300
C5—N1	1.338 (7)	C12—C13	1.414 (8)
C5—C6	1.490 (8)	C12—Br1	1.893 (5)
C6—N2	1.469 (7)	C13—O1	1.321 (6)
С6—Н6А	0.9700	N2—H2N	0.94 (4)
С6—Н6В	0.9700	Cu1—O1	1.923 (4)
C7—N2	1.492 (7)	Cu1—N2	2.001 (4)
C7—C8	1.496 (7)	Cu1—N1	2.011 (5)
С7—Н7А	0.9700	Cu1—Cl1	2.2517 (16)
N1—C1—C2	122.3 (6)	С8—С9—Н9	119.5
N1—C1—H1	118.9	С10—С9—Н9	119.5
C2—C1—H1	118.9	C9—C10—C11	120.4 (5)
C3—C2—C1	119.3 (6)	C9—C10—Br2	120.5 (4)
С3—С2—Н2	120.4	C11—C10—Br2	119.1 (4)
C1—C2—H2	120.4	C12-C11-C10	118.8 (5)
C2—C3—C4	118.9 (6)	C12-C11-H11	120.6
С2—С3—Н3	120.6	C10-C11-H11	120.6
С4—С3—Н3	120.6	C11—C12—C13	122.7 (5)
C3—C4—C5	119.2 (6)	C11-C12-Br1	118.8 (4)
С3—С4—Н4	120.4	C13-C12-Br1	118.6 (4)
С5—С4—Н4	120.4	O1—C13—C12	121.5 (5)
N1C5C4	121.6 (6)	O1—C13—C8	122.4 (5)
N1C5C6	117.4 (5)	C12—C13—C8	116.1 (5)
C4—C5—C6	121.0 (6)	C1—N1—C5	118.9 (5)
N2—C6—C5	110.9 (5)	C1—N1—Cu1	127.4 (4)
N2—C6—H6A	109.5	C5—N1—Cu1	113.8 (4)
С5—С6—Н6А	109.5	C6—N2—C7	111.8 (4)

N2—C6—H6B	109.5	C6—N2—Cu1	111.3 (4)
С5—С6—Н6В	109.5	C7—N2—Cu1	114.2 (3)
H6A—C6—H6B	108.1	C6—N2—H2N	116 (4)
N2—C7—C8	112.1 (5)	C7—N2—H2N	104 (4)
N2—C7—H7A	109.2	Cu1—N2—H2N	99 (4)
С8—С7—Н7А	109.2	C13—O1—Cu1	123.0 (3)
N2—C7—H7B	109.2	O1—Cu1—N2	93.56 (16)
С8—С7—Н7В	109.2	O1—Cu1—N1	166.0 (2)
H7A—C7—H7B	107.9	N2—Cu1—N1	82.99 (19)
C9—C8—C13	121.0 (5)	O1—Cu1—Cl1	92.22 (12)
C9—C8—C7	120.2 (5)	N2—Cu1—Cl1	161.76 (15)
C13—C8—C7	118.8 (5)	N1—Cu1—Cl1	95.21 (15)
C8—C9—C10	121.1 (5)		
N1—C1—C2—C3	0.5 (12)	C2—C1—N1—Cu1	178.1 (6)
C1—C2—C3—C4	0.0 (12)	C4—C5—N1—C1	0.9 (10)
C2—C3—C4—C5	0.1 (11)	C6—C5—N1—C1	-178.3 (6)
C3—C4—C5—N1	-0.5 (10)	C4—C5—N1—Cu1	-178.2 (5)
C3—C4—C5—C6	178.6 (6)	C6C5N1Cu1	2.6 (7)
N1—C5—C6—N2	-15.6 (8)	C5—C6—N2—C7	149.8 (5)
C4—C5—C6—N2	165.2 (6)	C5—C6—N2—Cu1	20.7 (7)
N2—C7—C8—C9	-127.8 (6)	C8—C7—N2—C6	172.3 (5)
N2—C7—C8—C13	52.8 (7)	C8—C7—N2—Cu1	-60.2 (5)
C13—C8—C9—C10	0.3 (9)	C12-C13-O1-Cu1	138.6 (4)
C7—C8—C9—C10	-179.1 (5)	C8—C13—O1—Cu1	-42.4 (7)
C8—C9—C10—C11	-1.3 (9)	C13—O1—Cu1—N2	26.5 (4)
C8—C9—C10—Br2	-178.9 (4)	C13—O1—Cu1—N1	101.6 (8)
C9—C10—C11—C12	0.8 (9)	C13—O1—Cu1—Cl1	-136.2 (4)
Br2-C10-C11-C12	178.4 (4)	C6—N2—Cu1—O1	150.7 (4)
C10-C11-C12-C13	0.7 (9)	C7—N2—Cu1—O1	22.9 (4)
C10-C11-C12-Br1	-178.8 (4)	C6—N2—Cu1—N1	-15.7 (4)
C11—C12—C13—O1	177.4 (5)	C7—N2—Cu1—N1	-143.5 (4)
Br1-C12-C13-O1	-3.1 (7)	C6—N2—Cu1—Cl1	-101.1 (5)
C11—C12—C13—C8	-1.6 (8)	C7—N2—Cu1—Cl1	131.1 (4)
Br1-C12-C13-C8	177.9 (4)	C1—N1—Cu1—O1	112.1 (8)
C9—C8—C13—O1	-177.9 (5)	C5—N1—Cu1—O1	-68.8 (9)
C7—C8—C13—O1	1.5 (8)	C1—N1—Cu1—N2	-171.6 (6)
C9—C8—C13—C12	1.1 (8)	C5—N1—Cu1—N2	7.5 (4)
C7—C8—C13—C12	-179.5 (5)	C1—N1—Cu1—Cl1	-9.8 (6)
C2-C1-N1-C5	-0.9 (10)	C5—N1—Cu1—Cl1	169.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2N···O1 ⁱ	0.94 (4)	2.14 (5)	2.918 (6)	139 (5)
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$.				

sup-5

